Notes to Users of this Catalogue

- This catalogue is an introduction to Tungaloy Cutting Tools.
- Specifications and stock status described in this catalogue are subject to change without prior notice.
- All unit sizes are metric in millimeter (mm).
- Units used in the catalogue conform to ISO standards in principle.

Stock status symbols

Stocked items

▲ : Discontinued items

★ : Available in 2013

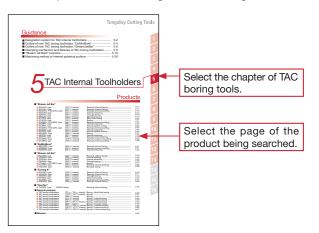
No symbol: Not stocked

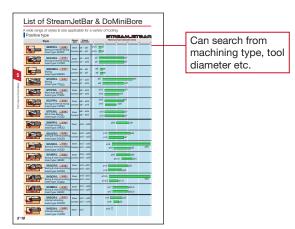
Note: The products described in this catalogue are as of Jul. 2012.

Ordering information

- When ordering, specify the Cat. No., grade and quantity. (Example for TAC inserts)
 CNMG120408-TM T9125, 10 pcs.
- TAC toolholders and TAC mills are shipped without inserts.
 Inserts must be ordered separately.
- For the special grades or special products, please contact your nearest Tungaloy sales office.

■Constitution of Tungaloy Cutting Tool Catalogue


In this catalogue, products are described by machining types such as TAC turning inserts, TAC turning toolholders, threading tools and drilling tools. Users can select optimum tools by using the following searching methods.


Searching from the numerical / alphabetical index (Chapter 16)

Catalogue numbers of products and parts are listed in numerical and alphabetical order in Chapter 16. When searching the product of known Cat. No., use this index.

Searching from the classification of tools

When searching the product from the tool type, open the title page of the chapter of the tool type. For example, when searching the TAC boring tool: • Searching from the tool list in each chapter Search from the tool list.

Basic Constitution of Tungaloy Cutting Tool Catalogue

	Grades	
TURNLINE	TAC Inserts	2
	PCBN & PCD Tools: T-CBN / T-DIA	3
		4
	TAC External Toolholders	_
	TAC Internal Toolholders	5
	TAC Grooving & Parting Tools	6
	TAC Threading Tools	7
	TAC Tools for Small Lathes: J Series	8
MILLINE	TAC Mills	9
-	Endmills	10
DRILLLINE	Drilling Tools	11
TOOLLINE	Tooling Systems	12
Om	itted / Brazed and Solid Carbide Tools	13
	Parts for TAC Tools	14
	Technical References	15
	Index	16

Special surface technology

PREMIUMTEC

TUNGALOY

New Grades

AH600 series AH725, AH905

T9100 SERIES

TUNGALOY

New CVD coated grade for steel turning

Provides a high level of reliability with excellent fracture resistance!


T5100 SERIES

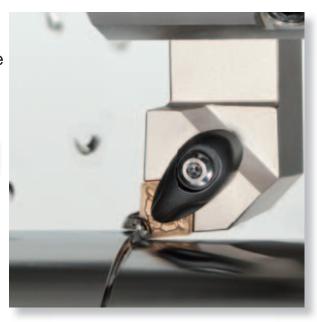
TUNGALOY

PREMIUMTEC

Excellent cutting performance with significantly improved wear and impact resistance.

T6100 SERIES

NEW PREMIUMTEC


Incredible reliability in stainless steel turning

T6120: Suitable grade for high speed cutting due to excellent plastic deformation resistance

T6130: Versatile grade for medium to high speed cutting. This is credit to exceptional

wear resistance

H600 SERIES

Exceptional tool life due to the newly developed PVD coating

AH630: Versatile grade that has an excellent balance of fracture and wear resistance

AH645: Provides outstanding reliability with

high fracture resistance

Sharpness of positive inserts with twice the number of cutting edges

- Applicable from ø12 mm min bore with double sided insert

- High performance toolholders that have high rigidity and excellent chip evacuation

Cutting-edge technology provides maximum productivity

- Suitable for highly productive roughing operations

 Long cutting edges cover a fluctuating depth of cut

TURNINGA

TUNGALOY

Toolholders for external and internal turning

Improved clamping forces provide high accuracy and stable long tool life

STREAMJETBAR

TUNGALOY

Toolholders for internal turning

Highly rigid boring bars with excellent chip evacuation

TUNGCUT

The complete grooving solution

- Multifunctional system for diverse grooving needs
- NS530 Cermet grade has been extended to feature fine surface finishing inserts

TINYTURN

Solid boring bars applicable for min ø0.6 mm bore!

 Fine cutting edge and smooth coating offer high precision machining

 Wide range of items can be applied to a wide range of internal operations

BXM SERIES

The new standard coated CBN grade for hardened steel machining

Applicable for all types of hardened steel turning



MINI T-CBN

The smallest indexable CBN inserts in the world

- For boring down to Ø4.5 mm with CBN inserts
- Sharp cutting edge reduces the cutting forces and provides the finest surface quality

DIMPLEFX

Ceramic insert with dimple for high speed machining of cast irons

New innovative clamping system delivers high productivity!

Special surface technology

PREMIUMTEC

New Grades

AH725 / AH130 / T1115

Provides a smooth insert surface to prevent chip adhesion and improve chipping resistance

EED SERIES

New-generation of high feed cutters offering incredible productivity

- Large inclination drastically reduces the cutting forces and prevents chattering

- Two sizes of insert allow a wider tool diameter range

EDQUA

High productivity and economical solution with 8 corner type inserts

- Dovetail structure improves the clamping strength

- Ideal insert with high fracture resistance for outstanding productivity

JGHINGMILL SERIES

NEW Long cutting edges create incredible productivity

'UNGQUA

- 4 cornered insert with excellent sharpness
- Suitable for roughing operations on small to medium size machines

MGREC

- Insert geometry with large positive rake angle reduces the cutting forces
- Newly developed cutter body with high density insert pocket provides the exceptional productivity

- Tangential insert with tough cutting edges allow the high productivity
- Suitable for heavy machining of a wide range of materials

GQUAD

Highly productive small diameter cutter

TUNGREC

The multi-purpose high precision cutter

- Helical cutting edges provide smooth cutting
- 4 types of chipbreaker and various kinds of cutter bodies cater to a wide range of applications

TECMILL

Highly rigid shoulder milling cutters for roughing operations with tangential insert

- Economical double sided insert with 4 edges
- Excellent balance with toughness and sharpness

Incredibly secure system for slot milling

 Excellent productivity credit to a rigid cutter body with high density insert pockets

- Thick tangential insert with tough cutting

edges

Economical double sided square insert with high level of sharpness

- Remarkable productivity with tough cutting edges

 Innovatively designed cutting edges reduce the cutting forces

DOOCTO

DOQUAD

Face milling cutter

The best solution for steel and cast iron milling!

- Available with octagonal or square inserts and different cutter bodies for each type of insert
- 2 types of clamping systems
- Extremely versatile series

Face milling cutter

Pentagonal double sided insert with 10 cutting edges

- High productivity at high feed rate condition
- NS740 Cermet grade is expanded, providing exceptional surface finish

ROUNDSPLIT

Radial milling cutter

Serrated cutting edges prevent chattering

- Serrated edges provides smooth cutting in long overhang applications

 Serrated and round inserts fit in the same pocket

TUNGMEISTER

Head changeable endmills

Endmilling innovation!

- The most effective tooling with hundreds of combinations!

- Easy head clamping system drastically reduces tool changing time

TUNGSIX-DRILL

Special surface technology
PREMIUMTEC
TUNGALOY

The most economical solution for drilling with innovative insert and grade

- Enhanced corner offers incredibly stable drilling
- New revolutionary grade AH9030 allows long tool life

TUNGORILLTWISTED

TUNGALOY

Higher productivity due to superior chip evacuation!

- Newly developed DG chipbreaker is added
- 4 types of chipbreaker demonstrate the excellent chip control in a wide range of materials

TUNGORILLBIG

Expandable diameter drill

- The drill diameter can be changed by using "Setting plates"
- 5 kinds of drill bodies cover the entire diameter range ø55 - ø80 mm

DRILLMEISTER

The innovative head changeable drill for high productivity

 Easy and secure clamping system drastically reduces tool set-up time

 DrillMeister with exclusive chamfering adapter reduces machining process time

TUNGHOLD

TUNGALOY

Tooling System

Unique function and wide range of variation

A large variety of holders, collet chucks, endmill holders and face mill arbors that can be applied to a wide range of machining applications.

TUNGCAP

Tooling System

Quick change system for flexible machines

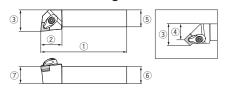
TungCap has a polygon design taper that can be applied to a wider range of cutting applications on flexible machines.

Safety Notes

Tungaloy implements the highest standards when manufacturing cutting tool products. The following precautions must be exercised whenever working with or near metalcutting machinery and metalcutting tool products.

- Cemented tungsten carbide, coated carbide, cermet, ceramic, polycrystalline compact (hard materials) are hard and brittle. Therefore, caution must be used during cutting operation. During the cutting operation, tools may be broken due to thermal shock, excessive tool wear or mishandling which may cause serious injury to the operator.
- 2. During operation of the machine, a machine guard, safety glasses, gloves etc. should always be used to prevent injury due to hot flying chips, fragmented cutting tools, broken work pieces, etc.
- 3. Some cutting tools may have sharp edges. Safety gloves should always be used when handling these products.
- 4. During the cutting operation, high temperature sparks may be generated by broken tools or chips and could cause a fire. Precautions must be taken during machine placement and while using waterinsoluble cutting fluid.
- When grinding carbide cutting tool materials, adequate ventilation, respiratory protection mask and eye protection should be used to protect the operator from grinding dust injury.
- Consult the Material Safety Data Sheet (MSDS) for details on potentially hazardous properties and substances associated with grinding carbide. (MSDS sheets are available upon request.)
- 7. Tungaloy suggests the implementation of well established safety practices during the use of all cutting tool products. Tungaloy recommends compliance with industry safety standards in all sectors of the work environment.

Unified symbols for cutting conditions and tool dimensions

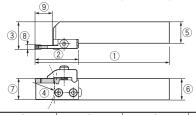

The Japan Cemented Carbide Tool Manufacturers' Association, in cooperation with The Japan Small Cutting Tools Association, has enacted unified quantity symbols of cutting conditions and tool specifications for users' convenience.

(Quantity symbols of cutting conditions) Symbol / Unit

	Cutting	speed	Fe	ed	Depth	of cut	Cutting e	dge width	Work d	iameter
Turning	<i>V</i> c	m/min	f	mm/rev	ар	mm	W	mm	ø <i>D</i> m	mm
rarriirig	Power consumption		Specific cutting force		Theoretical surf	face roughness	Corner	radius	Number of	revolutions
	Pc	<i>k</i> W	kc	MPa	h	μm	rε	mm	n	min-1
	Cutting speed		Feed	speed	Feed pe	er tooth	Fe	ed	Number	of teeth
	<i>V</i> c	m/min	Vf	mm/min	fz	mm/t	f	mm/rev	Z	
Milling	Milling Axial depth of cut		Radial depth of cut		Pick feed		Power consumption		Specific cutting force	
Willing	<i>a</i> p	mm	ae	mm	Pf	mm	Pc	kW	kc	MPa
	Chip rem	oval rate	Number of revolutions							
	Q	cm ³ /min	n	min-1						
	Cutting	speed	Feed	speed	Fe	ed	Tool di	ameter	Power consumption	
Drillina	<i>V</i> c	m/min	Vf	mm/min	f	mm/rev	øDс	mm	Pc	kW
חוווותן	Tord	que	Thrust force		Specific cutting force		Drilling depth		Number of revolutions	
	Mc	N⋅m	Tc	N	Kc	MPa	Н	mm	n	min-1

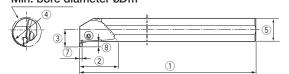
Dimensional symbols of turning tools

External turning tools

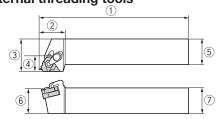

1	2	3	4	(5)	6	7
Overall length	Head length		Distance to cutting edge	Shank width	Shank height	Cutting edge height
<i>L</i> ₁	L ₂	f	<i>f</i> ₁	b	h	h ₁

Internal turning tools

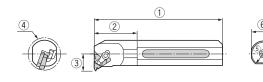
1)	2	3	4	(5)	6
Overall length	Head length	Distance to cutting edge	Minimum bore diameter	Shank diameter	Shank height
L ₁	L ₂	f	øD _m	øDs	h


External and face grooving tools

1	2	3	4	(5)
Overall length	Head length	Distance to cutting edge	Maximum grooving diameter	Shank width
<i>L</i> ₁	L ₂	f	øD _m	b
6	7	8	9	
Shank height	Cutting edge height	Cutting edge width	Maximum grooving depth	
h	h ₁	W	ar	


Internal grooving tools

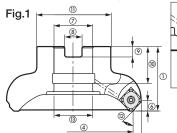
Min. bore diameter øDm

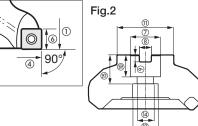


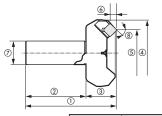
1)	2	3	4	
Overall length	Head length	Distance to cutting edge	Maximum grooving diameter	
<i>L</i> ₁	L ₂	f	øD _m	
(5)	6	7	8	
Shank diameter	Shank height	Cutting edge width	Maximum grooving depth	
øDs	h	W	ar	

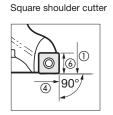
External threading tools

Internal threading tools

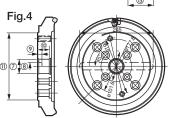

ĺ	1)	2	3	4	(5)	6	7	1)	2	3	4	(5)	6
	Overall length	Head length	Distance to cutting edge	Shoulder width	Shank width	Shank height	Cutting edge height	Overall length	Head length	Distance to cutting edge	Maximum grooving diameter	Shank diameter	Shank height
ĺ	L ₁	L ₂	f	-	b	h	h ₁	L ₁	L ₂	f	øD _m	øDs	h


Dimensional symbols of milling tools Rore type milling tools Square shoulder cutter

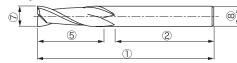

Bore type milling tools



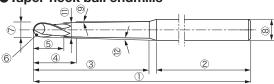
Shank type milling tools



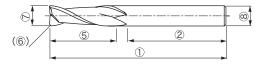
- : 0	_	3
Fig.3	18	
10 2 8 1		

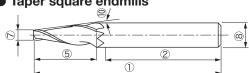


1	2	3	4		
Overall length	Shank length	Cutter height	Cutter diameter		
L	ℓs	Lf	øDс		
(5)	6	7	8		
Maximum outer diameter	Maximum depth of cut	Shank diameter	Corner angle		
øD1	ар	øDs	κ		

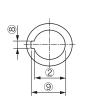

1)	4	(5)	6	7	8	9	10	11)	12	(13)	(14)	(15)
Cutter height	Cutter diameter	Maximum outer diameter	Maximum depth of cut	Hole diameter	Key way width	Key way depth	Mounting hole depth	Mounting flat diameter	Corner angle	Mounting bolt counter bore dia.	Mounting bolt hole diameter	Mounting bolt hole depth
Lf	øDс	øD1	ар	d	а	b	ℓ	øDь	κ	ød1	ød2	ℓ1

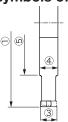
Dimensional symbols of endmills

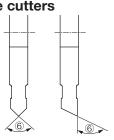

Square endmills


●Taper-neck ball endmills

Radius endmills

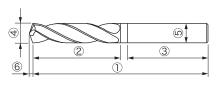



Taper square endmills



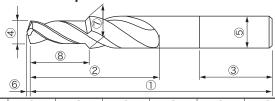
1	2	3	4	(5)	6 Ball end	6 Radius end	7	8	9	10	11)	(12)	13
Overall length	Shank length	Neck length	Length of parallel portion	Cutting edge length	Ball radius	Corner radius	Tool diameter	Shank diameter	Half angle of neck taper	Half angle of cutting edge taper	Neck diameter	Interfer- ence angle	Helix angle
L	ℓ_{S}	<i>ℓ</i> 2	<i>l</i> 1	ℓ	R	r	øDc	øDs	$ heta_{n}$	$ heta_{ extsf{c}}$	øD1	θκ	λ

Dimensional symbols of side cutters



_	 +
7/	

1)	2	3	4	(5)	
Cutter diameter	Bore diameter	Cutting edge width	Boss thickness	Boss diameter	
øDc	ød	ℓ	Т	øDь	
6	7	8	9	10	
Cutting edge angle	Corner radius	Key way width	Key way depth	Number of teeth	
α	R	а	h	7	


Dimensional symbols of drills

Solid straight drills

1	2	3	4	(5)	6
Overall length	Flute length	Shank length	Drill diameter	Shank diameter	Point length
L	ℓ	ℓ_{S}	øDc	øDs	Lp

Solid step drills

1	2	3	4	(5)	6	7	8
Overall length	Flute length	Shank length	First step drill diameter	Shank diameter	Point length	Second step drill diameter	Step length
L	ℓ	ℓ_{S}	øDc	øDs	Lp	øDc2	ℓ 1